If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9z2 + -3z + 1 = 0 Reorder the terms: 1 + -3z + 9z2 = 0 Solving 1 + -3z + 9z2 = 0 Solving for variable 'z'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 0.1111111111 + -0.3333333333z + z2 = 0 Move the constant term to the right: Add '-0.1111111111' to each side of the equation. 0.1111111111 + -0.3333333333z + -0.1111111111 + z2 = 0 + -0.1111111111 Reorder the terms: 0.1111111111 + -0.1111111111 + -0.3333333333z + z2 = 0 + -0.1111111111 Combine like terms: 0.1111111111 + -0.1111111111 = 0.0000000000 0.0000000000 + -0.3333333333z + z2 = 0 + -0.1111111111 -0.3333333333z + z2 = 0 + -0.1111111111 Combine like terms: 0 + -0.1111111111 = -0.1111111111 -0.3333333333z + z2 = -0.1111111111 The z term is -0.3333333333z. Take half its coefficient (-0.1666666667). Square it (0.02777777779) and add it to both sides. Add '0.02777777779' to each side of the equation. -0.3333333333z + 0.02777777779 + z2 = -0.1111111111 + 0.02777777779 Reorder the terms: 0.02777777779 + -0.3333333333z + z2 = -0.1111111111 + 0.02777777779 Combine like terms: -0.1111111111 + 0.02777777779 = -0.08333333331 0.02777777779 + -0.3333333333z + z2 = -0.08333333331 Factor a perfect square on the left side: (z + -0.1666666667)(z + -0.1666666667) = -0.08333333331 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 6x+4=2-3x | | 3=5x-32 | | -2y+10=-14 | | y=(x+4)(2x-7) | | Y=-x^2-18x-78 | | 501=578-3x | | 4x+2x=4+3y | | 4-2x=2-3x | | 6x-50=31-3x | | 6x+y-6z=-13 | | 3.4+0.35= | | 18-2=12+5x | | R^2+2r-14=0 | | 15+26+2y-10=89 | | x^3-8x^2+11x+20= | | 3+78x=52x+27 | | 6-y=7 | | 218=4(10n+8)-9n | | 8x-2=3x-13 | | -243=-9(10+w) | | (X+5)(6x-1)=0 | | 4x^2+5x+3x+5x+3+15=0 | | 21=-3(x+12) | | 7x+2(4-x)=12-3(5+6x) | | 63-4x=9-10x | | -7(2t+7)=-7 | | 9=4x-x+6 | | 4(-4+7x)=-212 | | tanx*sinx=3cosx | | 30-5n=25 | | -78=-6(m+3) | | 4(f-7)=-8 |